The Bootstrap Is Inconsistent with Probabilitytheory

نویسنده

  • David H. Wolpert
چکیده

This paper proves that for no prior probability distribution does the bootstrap (BS) distribution equal the predictive distribution, for all Bernoulli trials of some xed size. It then proves that for no prior will the BS give the same rst two moments as the predictive distribution for all size trials. It ends with an investigation of whether the BS can get the variance correct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution

This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...

متن کامل

Bootstrap Sample Size in Nonregular Cases

We study the bootstrap estimator of the sampling distribution of a given statistic in some nonregular cases where the given statistic is nonsmooth or not-so-smooth. It is found that the ordinary bootstrap, based on a bootstrap sample of the same size as the original data set, produces an inconsistent bootstrap estimator. On the other hand, when we draw a bootstrap sample of a smaller size with ...

متن کامل

Inconsistency of Bootstrap for Nonstationary, Vector Autoregressive Processes

Using a nonstationary, bivariate autoregressive process with iid innovations, this paper shows that the bootstrap vector autoregressive causality test is inconsistent in general in the sense that its weak limit is di¤erent from that of the original causality test.

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

ITERATING THE m OUT OF n BOOTSTRAP IN NONREGULAR SMOOTH FUNCTION MODELS

In nonregular smooth function models with vanishing first derivative, the conventional bootstrap is known to be inconsistent, whereas the m out of n bootstrap is consistent. We explore the effects of iterating the m out of n bootstrap on coverage accuracy of bootstrap percentile confidence intervals in such models, and develop a special iterative scheme which outperforms the non-iterated m out ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996